##plugins.themes.huaf_theme.article.main##
Tóm tắt
Nghiên cứu này nhằm khảo sát thời gian ủ thích hợp để đạt tỷ lệ nảy mầm cao, sự biến thiên hàm lượng nước, hàm lượng polyphenol và chlorophyll theo thời gian từ ngày 3 đến ngày 8, cùng với hàm lượng GABA và khả năng kháng oxy hóa của cỏ lúa từ ba giống lúa: lúa mạch, nếp ngự và nếp than. Kết quả cho thấy thời gian ủ để đạt tỷ lệ nảy mầm cao lần lượt là 18 giờ cho lúa mạch, 40 giờ cho nếp ngự và 48 giờ cho nếp than. Thời điểm thu hoạch tối ưu để các loại cỏ đạt hàm lượng polyphenol và chlorophyll cao nhất được xác định như sau: lúa mạch vào ngày thứ 7 sau ngâm ủ (polyphenol: 3,41 mg GAE/g, chlorophyll: 19,75 mg/g), nếp ngự vào ngày thứ 6 sau ngâm ủ (polyphenol: 3,68 mg GAE/g, chlorophyll: 19,07 mg/g), và nếp than vào ngày thứ 5 sau ngâm ủ (polyphenol: 2,50 mg GAE/g, chlorophyll: 9,79 mg/g). Hàm lượng GABA đạt giá trị cao nhất trong cỏ lúa mạch (4,79 mg/g), tiếp đến cỏ nếp ngự (4,22 mg/g) và nếp than (2,39 mg/g). Tất cả các mẫu cỏ đều thể hiện khả năng kháng oxy hóa. Trong đó, cỏ nếp than có hoạt tính mạnh nhất với giá trị IC50 là 319,20 µg/mL.
##plugins.themes.huaf_theme.article.details##
Tài liệu tham khảo
Nguyễn Văn Toản, Lê Văn Luận, Hồ Đắc Nhân và Tống Thị Quỳnh Anh. (2019). Nghiên cứu ảnh hưởng một số yếu tố trong giai đoạn ngâm và ủ đến khả năng sinh tổng hợp Gama aminobutyric acid của giống lúa tím thảo dược Vĩnh Hòa (VH1). Tạp chí Khoa học và Công nghệ nông nghiệp, Trường Đại học Nông Lâm Huế, 3(2), 1285-1294.
TCVN 7035:2002 (ISO 11294 : 1994): Tiêu chuẩn Việt Nam về Cà phê bột - Xác định độ ẩm - Phương pháp xác định sự hao hụt khối lượng ở 103°C (Phương pháp thông thường) do Bộ Khoa học và Công nghệ ban hành.
TCVN 10414:2014 (ISO 10519:1997): Tiêu chuẩn quốc gia về Hạt cải dầu - Xác định hàm lượng chlorophyl - Phương pháp đo phổ.
TCVN 9745-1:2013 (ISO 14502-1:2005, Đính chính kỹ thuật 1:2006): Tiêu chuẩn quốc gia về Chè - Xác định các chất đặc trưng của chè xanh và chè đen - Phần 1 - Hàm lượng polyphenol tổng số trong chè - Phương pháp đo màu dùng thuốc thử Folin-Ciocalteu.
TCVN 11939:2017: Tiêu chuẩn quốc gia về Thực phẩm - Xác định hoạt độ chống oxy hóa bằng phản ứng với 2,2-diphenyl-1-picrylhydrazyl (DPPH).
Nguyễn Kim Vũ, Đỗ Hương Lam, Trần Tuấn Quỳnh và Nguyễn Thị Dung. (2003). Sản xuất bột dinh dưỡng từ gạo lật nảy mầm. Viện Công nghệ Sau thu hoạch.
Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi, H. (2006). Relaxation and immunity enhancement effects of γ‐aminobutyric acid (GABA) administration in humans. Biofactors, 26(3), 201-208.
Ball, D.M., Hoveland, C.S. & Lacefield, G.D. (1998). Southern forages. 2nd ed. Potash and Phosphate Inst and Foundation for Agronomic Research, Norcross, GA.
Carrillo-Reche, J., Newton, A. C., & Quilliam, R. S. (2021). Using seed respiration as a tool for calculating optimal soaking times for ‘on-farm’seed priming of barley (Hordeum vulgare). Seed Science Research, 31(2), 116-124.
Donkor, O. N., Stojanovska, L., Ginn, P., Ashton, J., & Vasiljevic, T. (2012). Germinated grains–Sources of bioactive compounds. Food chemistry, 135(3), 950-959.
García‐Castro, A., Román‐Gutiérrez, A. D., Castañeda‐Ovando, A., & Guzmán‐Ortiz, F. A. (2023). Total phenols and flavonoids in germinated barley using different solvents. Chemistry & Biodiversity, 20(10), e202300617.
Hitchcock, A.S., & Chase, A. (1971). Manual of the grasses of the United States. Dover Publ., New York.
Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M., & Sansawa, H. (2003). Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical nutrition, 57(3), 490-495.
Ikram, A., Saeed, F., Afzaal, M., Imran, A., Niaz, B., Tufail, T., Hussain, M., & Anjum, F. M. (2021). Nutritional and end‐use perspectives of sprouted grains: A comprehensive review. Food science & Nutrition, 9(8), 4617-4628.
Jannoey, P., Niamsup, H., Lumyong, S., Tajima, S., Nomura, M., & Chairote, G. (2010). γ-aminobutyric acid (GABA) accumulations in rice during germination. Chiang Mai Journal of Science, 37(1), 124-133.
Jensen, C. R., Andersen, M. N., & Lösch, R. (1992). Leaf water relations characteristics of differently potassium fertilized and watered field grown barley plants. Plant and Soil, 140(1), 225-239.
Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N., & Kimura, T. (2007). Effect of soaking and gaseous treatment on GABA content in germinated brown rice. Journal of food engineering, 78(2), 556-560.
Lahouar, L., El-Bok, S., & Achour, L. (2015). Therapeutic potential of young green barley leaves in prevention and treatment of chronic diseases: an overview. The American Journal of Chinese Medicine, 43(07), 1311-1329.
Malik, A. H. (2012). Governing grain protein concentration and composition in wheat and barley: use of genetic and environmental factors (Doctoral dissertation, Swedish University of Agricultural Sciences).
Martins, T., Barros, A. N., Rosa, E., & Antunes, L. (2023). Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules, 28(14), 5344.
Minaiyan, M., Ghannadi, A., Movahedian, A., & Hakim-Elahi, I. (2014). Effect of Hordeum vulgare L.(Barley) on blood glucose levels of normal and STZ-induced diabetic rats. Research in Pharmaceutical Sciences, 9(3), 173-178.
Mori, H., Kawabata, K., Yoshimi, N., Tanaka, T., Murakami, T., Okada, T., & Murai, H. (1999). Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis. Anticancer Research, 19(5A), 3775-3778.
Palmer, L. M., Schulz, J. M., Murphy, S. C., Ledergerber, D., Murayama, M., & Larkum, M. E. (2012). The cellular basis of GABAB-mediated interhemispheric inhibition. Science, 335(6071), 989-993.
Panthi, M., Subba, R. K., Raut, B., Khanal, D. P., & Koirala, N. (2020). Bioactivity evaluations of leaf extract fractions from young barley grass and correlation with their phytochemical profiles. BMC Complementary Medicine and Therapies, 20(1), 1-9.
Shahbandeh, M. (2025). World barley production from 2008/2009 to 2024/2025. Statista, New York, NY, USA.
Singkhornart, S., & Ryu, G. H. (2011). Effect of soaking time and steeping temperature on biochemical properties and γ-aminobutyric acid (GABA) content of germinated wheat and barley. Preventive Nutrition and Food Science, 16(1), 67-73.
Sullivan, P., Arendt, E., & Gallagher, E. (2013). The increasing use of barley and barley by-products in the production of healthier baked goods. Trends in Food Science & Technology, 29(2), 124-134.
Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., Marcone, M., F., Liu, R., & Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 174 (1), 502-508.
Zhang Q., Xiang, J., Zhang, L., Zhu, X., Evers, J., Vander, W., & Duan, L. (2014). Optimizing soaking and germination conditions to improve gamma aminobutyric acid content in japonica and indica germinated brown rice. Journal of Functional Foods, 10(1), 283-291.
Zeng, Y., Pu, X., Yang, J., Du, J., Yang, X., Li, X., Li, L., Zhou, Y., & Yang, T. (2018). Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxidative Medicine and Cellular Longevity, 2018(1), 3232080.
Zeng, Y., Pu, X., Yang, X., Yang, J., Du, J., Yang, T., & Li, X. (2016). Strategies of functional foods for heart disease prevention in human beings. Proceedings from the ICERP, 108-123.