##plugins.themes.huaf_theme.article.main##

Tóm tắt

Rau muống được biết đến nhiều vì dễ trồng, thời gian thu hoạch ngắn và giá trị dinh dưỡng cao. Nghiên cứu được thực hiện nhằm mục tiêu đánh giá hiệu quả của các dòng vi khuẩn quang dưỡng không lưu huỳnh màu tía (PNSB) đến sức sống hạt rau muống. Thí nghiệm được bố trí hoàn toàn ngẫu nhiên với 4 nghiệm thức là các tỷ lệ hòa loãng (không vi khuẩn, 1:1000, 1:1500 và 1:2000) trên 6 dòng đơn vi khuẩn gồm PPDW05, PPDW10, PPDW24, PPRS03, PPSE21, PPSE31 và hỗn hợp 6 dòng. Kết quả cho thấy ở tỷ lệ hòa loãng 1:2000 dòng đơn PPDW05, PPDW10, PPSE31 và hỗn hợp 6 dòng vi khuẩn đạt chiều dài rễ mầm cao nhất (2,53, 2,23, 2,23 và 2,27 cm), nhưng các dòng đơn PPDW24, PPRS03 và PPSE21 đạt chiều dài rễ mầm cao nhất (2,08, 2,06 và 1,89 cm) ở nồng độ 1:1000. Chiều dài chồi mầm đạt tốt nhất ở tỷ lệ 1:2000 đối với dòng đơn và hỗn hợp 6 dòng. Chỉ số sức sống hiệu quả ở tỷ lệ hòa loãng 1:2000 đối với tất cả các dòng, ngoại trừ dòng PPRS03. Ngoài ra, chỉ số tăng sức sống của mầm hiệu quả ở tỷ lệ hòa loãng 1:2000 đối với dòng đơn PPDW05 (74,4%), PPDW10 (51,8%), PPSE31 (60,9%) và hỗn hợp 6 dòng vi khuẩn (66,4%). Các dòng PNSB đều cải thiện nảy mầm và sức sống mầm rau muống ở tỷ lệ pha loãng 1:2000, có tiềm năng cao trong sử dụng để kích thích sinh trưởng cây trồng.

##plugins.themes.huaf_theme.article.details##

Cách trích dẫn
Hà Ngọc Thu, Nguyễn Nguyền Trân, Lê Thị Mỹ Thu, Nguyễn Đức Trọng, Trần Trọng Khôi Nguyên, Phùng Thị Hằng, Đỗ Tấn Khang, & Nguyễn Quốc Khương. (2025). Tác động của các dòng vi khuẩn quang dưỡng không lưu huỳnh màu tía đến sức sống của hạt rau muống. Tạp Chí điện tử Khoa học Và công nghệ nông nghiệp, 9(3), 5086–5096. https://doi.org/10.46826/huaf-jasat.v9n3y2025.1291
Chuyên mục
CÂY TRỒNG - THỰC VẬT

Tài liệu tham khảo

Lê Thị Mỹ Thu, Trần Trọng Khôi Nguyên, Nguyễn Đức Trọng, Võ Minh Thuận, Phan Chấn Hiệp và Lê Vĩnh Thúc. (2024). Đánh giá hiệu quả của các chủng vi khuẩn quang dưỡng không lưu huỳnh màu tía hòa tan kali tới sự nảy mầm của hạt ngô và lúa. Tạp chí nông nghiệp và phát triển nông thôn, 10, 25-37.
Anh, N. H., Xuan, L. N. T., Xuan, D. T., Quang, L. T. & Khuong, N. Q. (2024). Nitrogen-fixing purple nonsulfur bacteria originating from acid saline soils of a rice-shrimp farm. Indonesian Journal of Agricultural Research, 7(1), 14-28.
Brahim, A. H., Ben Ali, M., Daoud, L., Jlidi, M., Akremi, I., Hmani, H., Feto, N. A., & Ben Ali, M. (2022). Biopriming of durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to Fusarium head blight and salinity. Microorganisms, 10(5), 970.
Bui, T. H., Bui, V. L., Duong, V. H., Duong, D. T., Le, N. T., Tran, D. K., Tran, V. K., Ha, T. T. L., Phan, G. T. T., Tran, V. H., Hoang, V. K., & Tran, H. N. (2024). Transfer of natural radionuclides from soil to water spinach (Ipomoea aquatica Forssk) under flooded and unflooded conditions in Hanoi, Vietnam. Journal of Environmental Radioactivity, 277, 107445.
Castiglione, A. M., Mannino, G., Contartese, V., Bertea, C. M., & Ertani, A. (2021). Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants, 10(8), 1533.
Dhar, K., Venkateswarlu, K., & Megharaj, M. (2023). Anoxygenic phototrophic purple non-sulfur bacteria: tool for bioremediation of hazardous environmental pollutants. World Journal of Microbiology and Biotechnology, 39(10), 283.
Divyanshu, K., Yadav, M., Shukla, V., Kumar, S., Tripathi, Y. N., & Upadhyay, R. S. (2022). Molecular identification and characterization of plant growth promoting rhizobacteria and their effect on seed germination and vigour index of barley (Hordeum vulgare L.). Journal of Pure and Applied Microbiology, 16(2), 974-984.
Ebert, A. W., & Wu, T. H. (2019). The effect of seed treatments on the germination of fresh and stored seeds of okra (Abelmoschus esculentus) and water spinach (Ipomoea aquatica). Journal of Horticulture, 6(254), 2376-0354.
El-Sawi, N., Gad, M. H., Al-Seeni, M. N., Younes, S., El-Ghadban, E. M., & Ali, S. S. (2017). Evaluation of antidiabetic activity of Ipomoea aquatica fractions in streptozotocin induced diabetic in male rat model n. Sohag Journal of Sciences, 2(1), 9-17.
Fatima, Z., Saleemi, M., Zia, M., Sultan, T., Aslam, M., Rehman, R., & Chaudhary, M. F. (2009). Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. African Journal of Biotechnology, 8(2), 219-225.
Fevria, R., & Aliciafarma, S. (2021). Comparison of nutritional content of water spinach (Ipomoea aquatica) cultivated hydroponically and non-hydroponically. In Journal of Physics: Conference Series, 1940 (1), 012049.
Fiodor, A., Ajijah, N., Dziewit, L., & Pranaw, K. (2023). Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14, 1142966.
Garcia-Lemos, A. M., Grosskinsky, D. K., Saleem Akhtar, S., Nicolaisen, M. H., Roitsch, T., Nybroe, O., & Veierskov, B. (2020). Identification of root-associated bacteria that influence plant physiology, increase seed germination, or promote growth of the christmas tree species Abies nordmanniana. Frontiers in Microbiology, 11, 566613.
Guo, R., Wang, X., Han, X., Chen, X., & Wang-Pruski, G. (2020). Physiological and transcriptomic responses of water spinach (Ipomoea aquatica) to prolonged heat stress. BMC genomics, 21, 1-15.
Hagaggi, N. S. A., & Mohamed, A. A. (2020). Enhancement of Zea mays (L.) growth performance using indole acetic acid producing endophyte Mixta theicola isolated from Solenostemma argel (Hayne). South African Journal of Botany, 134, 64-71.
Han, C., & Yang, P. (2015). Studies on the molecular mechanisms of seed germination. Proteomics, 15(10), 1671-1679.
Iwai, R., Uchida, S., Yamaguchi, S., Sonoda, F., Tsunoda, K., Nagata, H., Nagata, D., Koga, A., Goto, M., Maki, T.-a., Hayashi, S., Yamamoto, S., & Miyasaka, H. (2022). Effects of seed bio-priming by purple non-sulfur bacteria (PNSB) on the root development of rice. Microorganisms, 10(11), 2197.
Jakubus, M., & Bakinowska, E. (2018). Practical applicability of germination index assessed by logistic models. Compost Science and Utilization, 26(2), 104-113.
Kantha, T., Kantachote, D., & Klongdee, N. (2015). Potential of biofertilizers from selected Rhodopseudomonas palustris strains to assist rice (Oryza sativa L. subsp. Indica) growth under salt stress and to reduce greenhouse gas emissions. Annals of Microbiology, 65(4), 2109-2118.
Khuong, N. Q., Sakpirom, J., Oanh, T. O., Thuc, L. V., Thu, L. T. M., Xuan, D. T., Quang, L. T. & Xuan, L. N. T. (2023a). Isolation and characterization of novel potassium-solubilizing purple nonsulfur bacteria from acidic paddy soils using culture-dependent and culture-independent techniques. Brazilian Journal of Microbiology, 54(3), 2333-2348.
Khuong, N. Q., Thuc, L. V., Giang, C. T., Xuan, L. N. T., Thu, L. T. M., Isao, A. & Jun-Ichi, S. (2023b). Improvement of nutrient uptake, yield of black sesame (Sesamum indicum L.), and alluvial soil fertility in dyke by spent rice straw from mushroom cultivation as biofertilizer containing potent strains of Rhodopseudomonas palustris. The Scientific World Journal, 2023(1), 1954632.
Koh, R. H., & Song, H. G. (2007). Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. Journal of Microbiology and Biotechnology, 17(11), 1805-1810.
Mahdi, I., Fahsi, N., Hafidi, M., Allaoui, A., & Biskri, L. (2020). Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from Chenopodium quinoa willd. Microorganisms, 8(6), 948.
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020). Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International journal of molecular sciences, 21(21), 8258.
Matsuo, T., Asano, T., Mizuno, Y., Sato, S., Fujino, I., & Sadzuka, Y. (2022). Water spinach and okra sprouts inhibit cancer cell proliferation. In Vitro Cellular & Developmental Biology-Animal, 58(2), 79-84.
Mia, M. B., Shamsuddin, Z. H., & Mahmood, M. (2012). Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. African Journal of Biotechnology, 11(16), 3758-3765.
Mujahid, M. D., Sasikala, C., & Ramana, C. V. (2011). Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2. Applied Microbiology and Biotechnology, 89, 1001-1008.
Najjaa, H., Abdelkarim, B. A., Doria, E., Boubakri, A., Trabelsi, N., Falleh, H., Tlili, H., & Neffati, M. (2020). Phenolic composition of some Tunisian medicinal plants associated with anti-proliferative effect on human breast cancer MCF-7 cells. The EuroBiotech Journal, 4, 104-112.
Nasichin, N., Fajarsukoco, F., Satria, D., Sebastian, Y., & Yulia, M. (2020). Rancang bangun alat tanam benih kangkung darat (Ipomoea Raptana Poir). Jurnal Ilmiah Teknik Pertanian-TekTan, 12(2), 116-126.
Ng, L.C., Sariah, M., Sariam, O., Radziah, O., & Zainal-Abidin, M. A. (2012). Rice seed bacterization for promoting germination and seedling growth under aerobic cultivation system. Australian Journal of Crop Science, 6(1), 170-175.
Nookongbut, P., Jingjit, N., Kantachote, D., Sukhoom, A., & Tantirungkij, M. (2020). Selection of acid tolerant purple nonsulfur bacteria for application in agriculture. Chiang Mai University Journal of Natural Sciences, 19(4), 774-790.
Pandey, S., & Gupta, S. (2020). Evaluation of Pseudomonas sp. for its multifarious plant growth promoting potential and its ability to alleviate biotic and abiotic stress in tomato (Solanum lycopersicum) plants. Scientific Reports, 10(1), 20951.
Purwanto, P., Oktaviani, E., & Leana, N. W. A. (2022). Seed Bio-Priming to Enhance Seed Germination and Seed Vigor of Rice Using Rhizobacteria from The Northern Coast of Pemalang, Central Java, Indonesia. Planta Tropika, 10(2), 152-159.
Riaz, U., Mehdi, S. M., Iqbal, S., Khalid, H. I., Qadir, A. A., Anum, W., Ahmad, M., & Murtaza, G. (2020). Bio-fertilizers: eco-friendly approach for plant and soil environment. Bioremediation and biotechnology: sustainable approaches to pollution degradation, 189-213.
Roy, S., Zilani, M. N. H., Alrashada, Y. N., Islam, M. M., Akhe, F. K., Uddin, S. J., & Sarower, M. G. (2022). Profiling of bioactive compounds and antioxidant activity of aquatic weed Ipomoea aquatica. Aquaculture, Fish and Fisheries, 2(5), 425-435.
Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews, 31(4), 425-448.
Sundar, L. S. & Chao, Y. Y. (2022). Potential of purple non-sulfur bacteria in sustainably enhancing the agronomic and physiological performances of rice. Agronomy, 12(10), 2347.
Thu, L. T. M., Xuan, L. N. T., Anh, N. H. M., Trong, N. D., Dao, N. T. X., Quang, L. T., Tho, L. T. N., Thu, H. N., Anh, N. T., Diem, N. T. T., & Khuong, N. Q. (2024a). Improving nitrogen content in soil and lemon balm (Melissa officinalis L.) yield by purple nonsulfur bacteria Rhodopseudomonas palustris in two consecutive seasons. International Microbiology, 27(6), 1821-1830.
Thu, L. T. M., Xuan, L. N. T., Nhan, T. C., Quang, L. T., Trong, N. D., Thuan, V. M., Nguyen, T. T. K., Nguyen, P. C., Thuc, L. V. & Khuong, N. Q. (2024b). Characterization of novel species of potassium-dissolving purple nonsulfur bacteria isolated from in-dyked alluvial upland soil for maize cultivation. Life, 14(11), 1461.
Wu, J. Y., Chen, H. W., Sundar, L. S., Tu, Y. K., & Chao, Y. Y. (2025). Exploring the potential of purple non-sulfur bacteria strains A3-5 and F3-3 in sustainable agriculture: a study on nutrient solubilization, plant growth promotion, and acidic stress tolerance. Journal of Soil Science and Plant Nutrition,25(2), 2294-2313.
Xuan, L. N. T., Thu, L. T. M., Nhan, T. C., Ngan, N. T., Tam, L. H. M., Dang, L. V., Trong, N. D., Quang, L. T., Diem, N. T. T., & Khuong, N. Q. (2024). Purple nonsulfur bacteria rhodopseudomonas palustris improve soil phosphorus availability and yield of lemon balm (Melissa officinalis L.) in alluvial soils via plant and ratoon seasons. The Open Agriculture Journal, 18, e18743315316126.